An integrated approach to identifying ecosystem recovery targets: Application to the Bay of Quinte

E.A. Blukacz-Richards ${ }^{1,2}$ and M.A. Koops ${ }^{1 *}$
${ }^{1}$ Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd., Burlington, ON L7R 4A6 ${ }^{2}$ Current address: Environment Canada, 4905 Dufferin Street, Toronto, ON M3H 5 T4
*Corresponding author: marten.koops@dfo-mpo.gc.ca

Supplement 1

This supplement provides a description of the input parameters for the Bay of Quinte (1994-2000) Lake Ontario food web (Table 1). We started with the post-dreissenid model developed by Koops et al. (2006). Here we provide a synopsis of the initial parameter values derived by Koops et al. (2006) and our modifications.

Original Model

Direct estimates of biomass, averaged across years and stations, were used for all groups. For Cormorants, Production: Biomass (P / B) and Consumption: Biomass $(\mathrm{Q} / \mathrm{B})$, ratios were estimated using values from Wesloh and Casselman (1992). Biomass estimates were summed based on functional groupings for Planktivores, Invertivores, Piscivores and Panfish. Biomass was split into life history stages for: 1) Walleye, 2) Yellow Perch, 3) White Perch, and 4) Panfish. Each multi-stanza group required additional estimates of growth rate (K from the von Bertalanffy growth equation) and the ratio of weight-at-maturity to asymptotic weight. Maximum length (L_{∞}) and K were estimated for each multi-stanza group by fitting a von Bertalanffy growth equation and minimizing the sum-of-squares difference between observed length-at-age (using mean total length-at-age for ages with available data) and the expected length-at-age $\left(L_{a}\right)$ as estimated by the von Bertalanffy growth equation:

$$
L_{a}=L_{\infty}\left(1-e^{-K\left(t-t_{0}\right)}\right)
$$

For all von Bertalanffy fits, t was equal to age and t_{o} was assumed to be equal to zero. P/B for Walleye was estimated from an allometric equation described by Randall and Minns (2000):

$$
\mathrm{P} / \mathrm{B}_{\mathrm{w}}=\left(2.64 W_{\mathrm{mat}}^{-0.35}\right)
$$

where $W_{\text {mat }}$ is the average weight at maturity. $W_{\text {mat }}$ was estimated separately for both male and female Walleye where age of maturity was assumed to be age- 3 for males and age- 4 for females (Stewart et al. 1999; Bowlby and Hoyle 2002) and these values were averaged across station-years to provide an overall P/B value for Walleye. These steps were repeated for all the remaining fish species, except for Gizzard Shad which had its P/B estimate, derived from longevity ($T_{\max }$) from an allometric equation described by Randall and Minns (2000):

$$
\mathrm{P} / \mathrm{B}_{\mathrm{z}}=\left(4.22 T_{\max }{ }^{-0.982}\right) .
$$

Similar steps were used for all the remaining fish species and age classes. Q/B ratios for Walleye and White Perch were derived from literature (Hurley 1986; Hurley and Minns 1986; and Hurley 1992). A simple modification of Ney's (1990) consumption equation:

$$
\frac{Q}{B}=2\left(\frac{P}{B}\right)+3
$$

where $\mathrm{P}=$ production, and $\mathrm{B}=$ biomass was used to estimate Q / B from estimates of P / B for the remaining fish species. P / B ratios for benthic invertebrates were derived from literature: 1) Other Benthos (no insects) (Johannsson et al. 2000), 2) Insects (McCullogh et al 1979 for Caddisflies, Kruger and Waters 1983 for Dragonfiles, Dermott et al. 1977 for Chaoborus, Lindegaard 1994 for Leeches, Parkyn et al 2002 for Crayfish), 3) Oligochaetes (Johnson and Brinkhurst 1971), 4) Chironomids (Johnson and Brinkhurst 1971), 5) Amphiopods (Johannsson et al. 2000), 6) Isopods (Johannsson et al. 2000), 7) Gastropods (Tudorancea et al. 1979), 8) Bivalves (Hamill et al. 1979), 9) Dreissinids (Chase and Bailey 1999). Q/B ratios for benthic invertebrates were derived from literature: 1) Other Benthos (no insects) (Nilsson 1974), 2) Insects (McCullogh et al 1979 for Caddisflies and Dragonfiles, Dermott et al. 1977 for Chaoborus, Lindegaard 1994 for Leeches, Gutierrez and Yurrita 2001 for Crayfish), 3) Oligochaetes (Lindegaard 1994), 4) Chironomids (Lindegaard 1994), 5) Amphiopods (Nilsson 1974), 6) Isopods (Nilsson 1974), 7) Gastropods (Lindegaard 1994), 8) Bivalves (Lindegaard 1994), 9) Dreissinids (Hamburger 1990). The P/B and Q/P ratios for Cercopagis were estimated from Laxson et al. (2003) where production was estimated directly. For the remaining zooplankton groups P/B ratios were derived from Stockwell and Johannsson (1997) and Q/P ratios were derived from Peters and Downing (1984). P/B ratios for Macrophytes, Epiphytes, and Periphytes were estimated from Leisti (2012 in press). Bulk phytoplankton production was measured directly using methods described by Millard et al. (1996) which served as input for P/B ratio estimates and these values were also compared to size-fractionated primary production reported by Munawar et al. (2010). Direct estimates for detritus (pelagic and sedimented) and dissolved organic carbon (DOC) were made.

Modified Model

The Koops et al. (2006) model was modified to allow evaluation of consistency among seven RAP targets. Specifically, some benthic groups were sub-divided to separate pollution sensitive and pollution tolerant species. Oligochaetes and chironomids were separated (originally a single group) and amphipods and isopods were separated (also originally a single group). Thus the model was modified from six benthic invertebrates groups to nine benthic groups.

Since the RAP target for phytoplankton referenced nuisance and eutrophic indicator species, the original single phytoplankton group was split into five groups. This was based on samples from composite midwater column tows which had been enumerated to either species or genus levels in the laboratory using an inverted microscope at 600X or higher total magnification (see Nicholls et al. 2002 for details). These samples were grouped into five categories based on the U.S. EPA planktonic state indicators: 1) inedible, 2) microcystis, 3) anabena, 4) aphanixomenon, and 5) remaining edible (U.S. EPA).

Table 1. Input parameters for the Bay of Quinte Ecopath model. * groups that differ from the model developed by Koops et al. (2006).

Group name	Biomass $\left(\mathbf{t} / \mathbf{k m}^{2}\right)$	P/B	Q/B $(/$ year $)$	Unass.	Detr.import $\left(\mathbf{t} / \mathbf{k m}^{2} /\right.$ year $)$
Cormorants	0.0059	0.44	96.30	0.2	

Piscivores	0.2	0.41	4.90	0.2
Walleye (5+)	1.5	0.31	4.03	0.2
Walleye (4)	0.332	0.52	5.16	0.2
Walleye (3)	0.321	0.42	5.98	0.2
Walleye (2)	0.279	0.86	7.59	0.2
Walleye (1)	0.238	1.12	11.34	0.2
Walleye YOY	0.144	5.90	33.60	0.2
Smallmouth Bass	0.06	0.35	4.07	0.2
Alewife	0.65	1.20	6.75	0.2
Yellow Perch (1)	3.2	0.58	3.85	0.2
Yellow Perch YOY	0.464	7.00	19.29	0.2
White Perch (1+)	1.9	0.56	4.24	0.2
White Perch YOY	0.386	8.00	25.61	0.2
Panfish (1+)	1.2	0.44	3.73	0.2
Panfish YOY	0.476	8.91	25.84	0.2
Invertivores	3.3	0.35	2.87	0.2
Planktivores	0.12	1.65	7.76	0.2
Trout-perch	0.04	1.53	7.42	0.2
Freshwater Drum	0.51	0.25	4.08	0.2
Round Goby	0.025	1.51	5.16	0.2
Common Carp	0.33	0.11	3.45	0.2
Gizzard Shad	0.8	1.12	4.88	0.2
Other Benthos (no insects)	0.154	4.96	25.80	0.2
Insects	2.046	5.22	34.47	0.2
Oligochaetes*	2.715	10.21	63.88	0.2
Chironomids*	4.869	14.31	55.72	0.2

Amphiopods*	1.904	4.42	26.40	0.2	
Isopods*	0.782	5.18	36.33	0.2	
Gastropods	0.913	3.32	13.42	0.6	
Bivalves	0.27	4.05	23.40	0.6	
Dreissinids	225	1.33	6.83	0.6	
Cercopagis	0.013	26.52	217.04	0.2	
Predatory Cladocerans	0.027	39.73	91.66	0.2	
Copepods	0.85	46.67	125.40	0.4	
Rotifers	0.132	53.91	245.77	0.6	
Herbivorous Zooplankton	3.68	51.98	189.07	0.6	
Macrophytes	80.89	7.61	96.30		
Epiphytes	6.26	93.16			
Periphytes	2.1	20.22			
inedible*	0.15	219.99			
microcystis*	1.20	370.28			
anabena*	1.25	226.23			
aphanixomenon*	0.35	245.38			
remaining edible*	7.01	257.17			
Pelagic Detritus	22.67				1461
Sedimented Detritus	6.8				438
DOC	21.45				455

The diet matrix for the Bay of Quinte, Lake Ontario Ecopath model is presented below where the diet proportions are shown for each species. Age classes for some of the fishes are indicated in parentheses. Phytoplankton is broken down into five groups: 1) inedible, 2) microcystis, 3) anabena, 4) aphanixomenon, and 5) remaining edible. Diets for cormorants were based on Wesloh and Casselman (1992). The diets for fish were based on information from FishBase (http://www.fishbase.org/search.php) and Scott and Crossman (1998). For benthic invertebrates, the diets were based on several sources: 1) other benthos (Nilson, 1974), 2) insects (McCullogh et al., 1979; Lindegaard, 1994; Gutierrez and Yurrita, 2001), 3) oligochaetes and chironomids (Lindegaard, 1992), 4) amphiopods and isopods (Nilson, 1974), 5) gastropods and bivalves (Lindegaard 1992), and 6) dreissinids (Hamburger et al., 1990). For zooplankton, were also based on several sources: 1) cercopagis (Pichlová-Ptáčníková and Vanderploeg, 2009), 2) predatory cladocerans (Yurista and Schulz, 1995), 3) copepods (Sprules, 1984), 4) rotifers, and 5) herbivorous zooplankton (Sprules, 1984).

Predator -group								
Prey-group	Cormorants	Piscivores	Walleye $(5+)$	Walleye (4)	Walleye (3)	Walleye (2)	Walleye (1)	Walleye YOY YOY
Cormorants								
Piscivores	0.005	0.012	0.00099	0.007	0.006	0.005	0.005	0.001
Walleye (2)	0.027							
Walleye (1)	0.108	0.012	0.00099					
Walleye YOY		0.012	0.00099	0.028	0.025	0.019	0.038	0.035
Smallmouth Bass	0.007	0.005	0.0005	0.001	0.00099	0.00095	0.00091	0.00097
Alewife	0.007	0.058	0.01	0.01	0.01	0.01	0.01	0.011
Yellow Perch (1)	0.462	0.208	0.00099	0.233	0.22	0.211		
Yellow Perch YOY		0.117	0.00099	0.15	0.246	0.205	0.375	0.1
White Perch (1+)	0.009	0.058	0.00099	0.15	0.119	0.103		
White Perch (1+)		0.058	0.00099	0.15	0.119	0.205	0.335	0.1
Panfish (1+)	0.308	0.156	0.00099	0.015	0.015	0.01	0.01	0.011
Panfish YOY		0.081	0.00099					0.02
Invertivores	0.009	0.058	0.00099					0.03
Planktivores	0.02	0.012	0.00099	0.01	0.01	0.01	0.01	0.011
Trout-perch		0.011		0.001	0.001	0.001	0.001	
Freshwater Drum	0.016	0.012						
Round Goby	0.001	0.001	0.000099	0.002	0.001	0.001	0.001	0.001

Common Carp		0.012						
Gizzard Shad	0.02	0.058	0.01	0.091	0.075	0.063	0.059	0.057
Other Benthods (no insects)		0.004	0.003	0.006	0.005	0.006	0.005	0.004
\quad Insects		0.054	0.046	0.085	0.071	0.074	0.072	0.053
Oligochaetes		0.007	0.022	0.027	0.027	0.021	0.041	
Chironomids		0.012	0.039	0.048	0.049	0.038	0.073	
Amphiopods						0.038		
\quad Isopods						0.016		
Predatory Cladocerans Copepods Rotifers						0.054		
Herbivorous								
Zooplankton						0.171		

Predator -group								
Prey-group	Smallmouth Bass	Alewife	Yellow Perch (1)	$\begin{aligned} & \hline \text { YOY } \\ & \text { Yellow } \\ & \text { Perch } \end{aligned}$	White Perch (1+)	White Perch YOY	Panfish $(1+)$	Panfish YOY
Walleye YOY	0.011	0.01	0.01		0.005		0.003	
$\begin{aligned} & \text { Smallmouth } \\ & \text { Bass } \end{aligned}$	0.001							
Alewife	0.05		0.01					
Yellow Perch (1)	0.101							
Yellow Perch YOY	0.164		0.01				0.003	
White Perch $(1+)$	0.055		0.01					
White Perch YOY	0.055		0.01				0.003	
Panfish (1+)	0.01		0.01					

Predator -group									
Prey-group	$\begin{aligned} & \text { Panfish } \\ & (1+) \end{aligned}$	$\begin{aligned} & \text { Panfish } \\ & \text { YOY } \end{aligned}$	Invertivores	Planktivores	Trout-perch	Freshwater Drum	Round Goby	Common Carp	Gizzard Shad
Walleye (1)	0.003								
Smallmouth Bass			0.011			0.01			
Yellow Perch (1)	0.003								
White Perch (1+)	0.003								

Detritus									
	Predator -group								
Prey-group	Other Benthods (no insects)	Insects	Oligochaetes	Chironomids	Amphiopods	Isopods	Gastropods	Bivalves	Dreissinids
Other Benthods (no insects)	0.03								
Insects	0.398								
Oligochaetes	0.165								
Chironomids	0.296								
Amphiopods	0.079				0.0275	0.0275	0.037		
Isopods	0.032				0.0275	0.0275	0.015		
Macrophytes					0.308	0.308	0.19		
Epiphytes							0.284		
Periphytes					0.208	0.208	0.284		
microcystis	0.000041	0.07	0.07	0.07				0.023	0.027
anabena	0.000046	0.078	0.078	0.078				0.026	0.031
aphanixomenon	0.0000085	0.014	0.014	0.014				0.005	0.006
remaining edible	0.00049	0.838	0.838	0.838				0.279	0.33
Pelagic Detritus									0.346
Sedimented Detritus					0.43	0.43	0.19	0.573	
DOC								0.093	0.26

Predator -group					
Prey-group	Cercopagis	Predatory Cladocerans	Copepods	Rotifers	Herbivorous Zooplankton
Copepods	0.2	0.2	0.14		
Rotifers			0.047		
Herbivorous	0.8	0.8	0.279		

Zooplankton			
microcystis	0.037	0.031	0.033
anabena	0.042	0.035	0.037
aphanixomenon	0.008	0.006	0.007
remaining edible	0.448	0.372	0.397
Pelagic Detritus		0.556	0.526

References

Bowlby, J. N., Hoyle, J.A., 2002. Abundance, recruitment, and mortality rates of walleye in eastern Lake Ontario. In Lake Ontario Fish Communities and Fisheries: 2001 Annual Report of the Lake Ontario Management Unit. Ontario Ministry of Natural Resources, Picton, Ontario, Canada.
Chase, M.E., Bailey, R.C., 1999. The ecology of the zebra mussel (Dreissena polymorpha) in the lower Great Lakes of North America. II. Total production, energy allocation and reproductive effort. J. Great Lakes Res., 25, 122-144.
Dermott, R.M., Kalff, J., Leggett, W.C., Spence, J., 1977. Production of Chironomus, Procladius and Chaoborus at different levels of phytoplankton biomass in Lake Memphremagog, Quebec- Vermont. J. Fish. Res. Board Can. 34: 2001-2007.
Gutierrez-Yurriata, P.J., Montes, C. 2001., Bioenergetics of juveniles of red swamp crayfish (Procambarus clarkii). Comp.Biochem. and Physiol.- Part A. Molecular and Integrative Physiology., 130, 29-38.
Hamburger, K., Dall, P.C., Jonasson, P.M. 1990. The role of Dreissena polymorpha Pallas (Mollusca) in the energy budget of Lake Esrom Denmark. Verh. Intern. Verein. Limnol. 24,621-625.
Hamill, S.E., Qadri, S.U., Mackie, G.L., 1979. Production and turnover ratio of Pisidium casertanum (Pelecypoda:Sphaeiidae) in the Ottawa River near Ottawa-Hull, Canada. Hydrobiologia 62, 225-230.
Hoyle, J. A., 2004., Eastern Lake Ontario fish community index netting program, 2004. LOA 04. 06. File Report. Lake Ontario Management Unit. Ontario Ministry of Natural Resources, Picton, Ontario.
Hurley, D.A. 1986., Growth, diet, and food consumption of walleye (Stizostedion vitreum vitreum): an application of bioenergetics modelling to the Bay of Quinte, Lake Ontario, 224-236. In C.R. Minns, D.A. Hurley, and K.H. Nichols [ED.] Project Quinte: point-source phosphorus control and ecosystem response in the Bay of Quinte, Lake Ontario. Can. Fish. Aquat. Sci. Spec. Publ. 86. 270 p.
Hurley, D.A. 1992., Feeding and trophic interactions of white perch (Morone americana) in the Bay of Quinte, Lake Ontario. Can. J. Fish. Aquat. Sci. 49, 2249-2259.
Johannsson, O., Dermott, R., Graham, D., Dahl, J., Millard, S., Myles, D., LeBlanc, J., 2000. Benthic and secondary production in Lake Erie after the invasion of Dreissena spp. with implications for fish production. J. Great Lakes Res., 26, 31-54.
Johnson, M.G., Brinkhurst, R.O., 1971. Production of benthic macroinvertebrates of Bay of Quinte and Lake Ontario. J. Fish. Res. Bd. Can., 28, 1699-1714.
Koops, M.A., Irwin, B.J., MacNeil, J.E., Millard, E.S., Mills, E.L. 2006. Comparative ecosystem modelling of the ecosystem impacts of exotic invertebrates and productivity changes on fisheries in the Bay of Quinte and Oneida Lake. Great Lakes Fishery Commission Project Completion Report, Ann Arbor, MI.
Krueger, CC \& T.F. Waters. 1983. Annual production of benthic macroinvertebrates in three streams of different water quality. Ecol. 64: 840-850.
Laxson, C.L., McPhedran, K.N., Makarewicz, J.C., Telesh, I.V., Macisaac, H.J. 2003., Effects of the non-indigenous cladoceran Cercopagis pengoi on the lower food web of Lake Ontario. Fresh. Biol. 48, 2094-2106.
Leisti, K.E., Doka, S.E., Minns, C.K., 2012 in press. Submerged aquatic vegetation in the Bay of Quinte: Response to perturbations. Aqua. Eco. Health Manag. (in press).
Lindegaard, C., 1994. The role of zoobenthos in energy flow in two shallow lakes. Hydrobiologia. 275/276, 313-322.
McCullogh, D.A., Minshall, G.W., Cushing, C.E. 1979., Bioenergetics of a stream collector organism Tricorythodes minutus (Insecta: Ephermera) Limnol. Oceanog., 24, 45-58.
Millard, E. S., Myles, D.D., Johannsson, O.E., Ralph, K. M., 1996. Phytoplankton photosynthesis at two index stations in Lake Ontario 1987-1992: Assessment of the longterm response to phosphorus control. Can. J. Fish. Aquat. Sci., 53, 10921111.

Minns, C.K., Hurley, D.A., 1986., Population dynamics and production of white perch Morone americana, in the Bay of Quinte, Lake Ontario: P.215-223. In C. K. Minns, D. a. Hurley, and K. H. Nicholls [Ed.] Project Quinte: Point-Source Phosphorous Control and Ecosystem Response in the Bay of Quinte, Lake Ontario. Can. Spec. Publ. Fish. Aquat. Sci. 86, 270.
Munawar, M, Fitzpatrick, M., Munawar, I. F., Niblock, H., 2010. Checking the pulse of Lake Ontario's microbial-planktonic communities: A trophic transfer hypothesis. Aqua. Eco. Health. Manag. 13, 395-412.
Ney, J.J. 1990., Trophic economics in fisheries: assessment of demand-supply relationships between predators and prey. Rev. Aqua. Sci., 2,55-81.
Nicholls, K H., Heintsch, L., Carney, E.C., 2002. Univariate step-trend and multivariateassessments of the apparent relative effects of P loading reductions and zebra musselson the phytoplankton of the Bay of Quinte, Lake Ontario. J. Great Lakes Res. 28, 15-31.
Nilsson, L.M. 1974., Energy budget of laboratory population of Gammarus pulex (Amphipod) Oikos.25, 35-42.
Parkyn, S.M., Collier, K.J., Hicks B.J., 2002. Growth and population dynamics of crayfish Paranephrops planifrons in streams within native forest and pastoral land uses. N.Z. J. Mar. and Freshwat. Res. 36, 847-861.
Peters, R. H., Downing, J.A., 1984. Empirical analysis of zooplankton filtering and feeding rates. Limnol. Oceanogr., 29, 763784.

Pichlová-Ptácniková, R., Vanderploeg, H.A., 2009. The invasive cladoceran Cercopagis pengoi is a generalist predator capable of feeding on a variety of prey species of different sizes and escape abilities. Fun. App. Limno., 173, 267-279.
Randall, R. G. and C. K. Minns. 2000. Use of fish production per unit biomass ratios for measuring the productive capacity of fish habitats. Can. J. Fish. Aquat. Sci. 57,1657-1667.

Scott, W.B., Crossman, J.E., 1998. Freshwater Fishes of Canada. Galt House,Publications Ltd. Oakville, Ontario, Canada. 966 p.
Sprules, W.G., 1984. Towards an optimal functional classification of zooplankton for lake ecosystem studies. Ver. Internat. Verein. Limnol., 22, 320-325.
Stewart, T. J., Bowlby, J.N., Hoyle, J.A., Mathers, A., Schaner, T., 1999. Status of Walleye in the Bay of Quinte, Lake Ontario, Walleye Technical Workshop, Ontario Ministry of Natural Resources, Lake Ontario Management Unit, RR\#2 Picton, Ontario, Canada.
Stockwell, J.D., Johannsson, O.E., 1997. Temperature-dependent allometric models to estimate zooplankton production in temperate freshwater lakes. Can. J. Fish. Aqua. Sci., 54,2350-2360.
Tudorancea, C, R.H. Green, J. Huebner. 1979. Structure dynamics and production of the benthic fauna in Lake Manitoba. Hydrobiol. 64, 59-95.
U.S. EPA. Planktonic State Indicators. http://www.epa.gov/med/grosseile_site/indicators/plankton.html

Wesloh, D.V.C. , Casselman, J. 1992., Calculated fish consumption by Double-crested cormorants in eastern Lake Ontario. Colon. Waterbird Soc. 16, 63-64.
Yurista, P.M., Schulz, K.L., 1995. Bioenergetic analysis of prey consumption by Bythotrephes cederstroemi in Lake Michigan. Can. J. Fish. Aquat. Sci. 52, 141-150.

